Docker Deployment

Crawl4AI provides official Docker images for easy deployment and scalability. This guide covers installation, configuration, and usage of Crawl4AI in Docker environments.

Quick Start πŸš€

Pull and run the basic version:

# Basic run without security
docker pull unclecode/crawl4ai:basic
docker run -p 11235:11235 unclecode/crawl4ai:basic

# Run with API security enabled
docker run -p 11235:11235 -e CRAWL4AI_API_TOKEN=your_secret_token unclecode/crawl4ai:basic

Running with Docker Compose 🐳

Use Docker Compose (From Local Dockerfile or Docker Hub)

Crawl4AI provides flexibility to use Docker Compose for managing your containerized services. You can either build the image locally from the provided Dockerfile or use the pre-built image from Docker Hub.

Option 1: Using Docker Compose to Build Locally

If you want to build the image locally, use the provided docker-compose.local.yml file.

docker-compose -f docker-compose.local.yml up -d

This will: 1. Build the Docker image from the provided Dockerfile. 2. Start the container and expose it on http://localhost:11235.


Option 2: Using Docker Compose with Pre-Built Image from Hub

If you prefer using the pre-built image on Docker Hub, use the docker-compose.hub.yml file.

docker-compose -f docker-compose.hub.yml up -d

This will: 1. Pull the pre-built image unclecode/crawl4ai:basic (or all, depending on your configuration). 2. Start the container and expose it on http://localhost:11235.


Stopping the Running Services

To stop the services started via Docker Compose, you can use:

docker-compose -f docker-compose.local.yml down
# OR
docker-compose -f docker-compose.hub.yml down

If the containers don’t stop and the application is still running, check the running containers:

docker ps

Find the CONTAINER ID of the running service and stop it forcefully:

docker stop <CONTAINER_ID>

Debugging with Docker Compose

  • Check Logs: To view the container logs:

    docker-compose -f docker-compose.local.yml logs -f
    

  • Remove Orphaned Containers: If the service is still running unexpectedly:

    docker-compose -f docker-compose.local.yml down --remove-orphans
    

  • Manually Remove Network: If the network is still in use:

    docker network ls
    docker network rm crawl4ai_default
    


Why Use Docker Compose?

Docker Compose is the recommended way to deploy Crawl4AI because: 1. It simplifies multi-container setups. 2. Allows you to define environment variables, resources, and ports in a single file. 3. Makes it easier to switch between local development and production-ready images.

For example, your docker-compose.yml could include API keys, token settings, and memory limits, making deployment quick and consistent.

API Security πŸ”’

Understanding CRAWL4AI_API_TOKEN

The CRAWL4AI_API_TOKEN provides optional security for your Crawl4AI instance:

  • If CRAWL4AI_API_TOKEN is set: All API endpoints (except /health) require authentication
  • If CRAWL4AI_API_TOKEN is not set: The API is publicly accessible
# Secured Instance
docker run -p 11235:11235 -e CRAWL4AI_API_TOKEN=your_secret_token unclecode/crawl4ai:all

# Unsecured Instance
docker run -p 11235:11235 unclecode/crawl4ai:all

Making API Calls

For secured instances, include the token in all requests:

import requests

# Setup headers if token is being used
api_token = "your_secret_token"  # Same token set in CRAWL4AI_API_TOKEN
headers = {"Authorization": f"Bearer {api_token}"} if api_token else {}

# Making authenticated requests
response = requests.post(
    "http://localhost:11235/crawl",
    headers=headers,
    json={
        "urls": "https://example.com",
        "priority": 10
    }
)

# Checking task status
task_id = response.json()["task_id"]
status = requests.get(
    f"http://localhost:11235/task/{task_id}",
    headers=headers
)

Using with Docker Compose

In your docker-compose.yml:

services:
  crawl4ai:
    image: unclecode/crawl4ai:all
    environment:
      - CRAWL4AI_API_TOKEN=${CRAWL4AI_API_TOKEN:-}  # Optional
    # ... other configuration

Then either: 1. Set in .env file:

CRAWL4AI_API_TOKEN=your_secret_token

  1. Or set via command line:
    CRAWL4AI_API_TOKEN=your_secret_token docker-compose up
    

Security Note: If you enable the API token, make sure to keep it secure and never commit it to version control. The token will be required for all API endpoints except the health check endpoint (/health).

Configuration Options πŸ”§

Environment Variables

You can configure the service using environment variables:

# Basic configuration
docker run -p 11235:11235 \
    -e MAX_CONCURRENT_TASKS=5 \
    unclecode/crawl4ai:all

# With security and LLM support
docker run -p 11235:11235 \
    -e CRAWL4AI_API_TOKEN=your_secret_token \
    -e OPENAI_API_KEY=sk-... \
    -e ANTHROPIC_API_KEY=sk-ant-... \
    unclecode/crawl4ai:all

Create a docker-compose.yml:

version: '3.8'

services:
  crawl4ai:
    image: unclecode/crawl4ai:all
    ports:
      - "11235:11235"
    environment:
      - CRAWL4AI_API_TOKEN=${CRAWL4AI_API_TOKEN:-}  # Optional API security
      - MAX_CONCURRENT_TASKS=5
      # LLM Provider Keys
      - OPENAI_API_KEY=${OPENAI_API_KEY:-}
      - ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY:-}
    volumes:
      - /dev/shm:/dev/shm
    deploy:
      resources:
        limits:
          memory: 4G
        reservations:
          memory: 1G

You can run it in two ways:

  1. Using environment variables directly:

    CRAWL4AI_API_TOKEN=secret123 OPENAI_API_KEY=sk-... docker-compose up
    

  2. Using a .env file (recommended): Create a .env file in the same directory:

    # API Security (optional)
    CRAWL4AI_API_TOKEN=your_secret_token
    
    # LLM Provider Keys
    OPENAI_API_KEY=sk-...
    ANTHROPIC_API_KEY=sk-ant-...
    
    # Other Configuration
    MAX_CONCURRENT_TASKS=5
    

Then simply run:

docker-compose up

Testing the Deployment πŸ§ͺ

import requests

# For unsecured instances
def test_unsecured():
    # Health check
    health = requests.get("http://localhost:11235/health")
    print("Health check:", health.json())

    # Basic crawl
    response = requests.post(
        "http://localhost:11235/crawl",
        json={
            "urls": "https://www.nbcnews.com/business",
            "priority": 10
        }
    )
    task_id = response.json()["task_id"]
    print("Task ID:", task_id)

# For secured instances
def test_secured(api_token):
    headers = {"Authorization": f"Bearer {api_token}"}

    # Basic crawl with authentication
    response = requests.post(
        "http://localhost:11235/crawl",
        headers=headers,
        json={
            "urls": "https://www.nbcnews.com/business",
            "priority": 10
        }
    )
    task_id = response.json()["task_id"]
    print("Task ID:", task_id)

LLM Extraction Example πŸ€–

When you've configured your LLM provider keys (via environment variables or .env), you can use LLM extraction:

request = {
    "urls": "https://example.com",
    "extraction_config": {
        "type": "llm",
        "params": {
            "provider": "openai/gpt-4",
            "instruction": "Extract main topics from the page"
        }
    }
}

# Make the request (add headers if using API security)
response = requests.post("http://localhost:11235/crawl", json=request)

Note: Remember to add .env to your .gitignore to keep your API keys secure!

Usage Examples πŸ“

Basic Crawling

request = {
    "urls": "https://www.nbcnews.com/business",
    "priority": 10
}

response = requests.post("http://localhost:11235/crawl", json=request)
task_id = response.json()["task_id"]

# Get results
result = requests.get(f"http://localhost:11235/task/{task_id}")

Structured Data Extraction

schema = {
    "name": "Crypto Prices",
    "baseSelector": ".cds-tableRow-t45thuk",
    "fields": [
        {
            "name": "crypto",
            "selector": "td:nth-child(1) h2",
            "type": "text",
        },
        {
            "name": "price",
            "selector": "td:nth-child(2)",
            "type": "text",
        }
    ],
}

request = {
    "urls": "https://www.coinbase.com/explore",
    "extraction_config": {
        "type": "json_css",
        "params": {"schema": schema}
    }
}

Dynamic Content Handling

request = {
    "urls": "https://www.nbcnews.com/business",
    "js_code": [
        "const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();"
    ],
    "wait_for": "article.tease-card:nth-child(10)"
}

AI-Powered Extraction (Full Version)

request = {
    "urls": "https://www.nbcnews.com/business",
    "extraction_config": {
        "type": "cosine",
        "params": {
            "semantic_filter": "business finance economy",
            "word_count_threshold": 10,
            "max_dist": 0.2,
            "top_k": 3
        }
    }
}

Platform-Specific Instructions πŸ’»

macOS

docker pull unclecode/crawl4ai:basic
docker run -p 11235:11235 unclecode/crawl4ai:basic

Ubuntu

# Basic version
docker pull unclecode/crawl4ai:basic
docker run -p 11235:11235 unclecode/crawl4ai:basic

# With GPU support
docker pull unclecode/crawl4ai:gpu
docker run --gpus all -p 11235:11235 unclecode/crawl4ai:gpu

Windows (PowerShell)

docker pull unclecode/crawl4ai:basic
docker run -p 11235:11235 unclecode/crawl4ai:basic

Testing πŸ§ͺ

Save this as test_docker.py:

import requests
import json
import time
import sys

class Crawl4AiTester:
    def __init__(self, base_url: str = "http://localhost:11235"):
        self.base_url = base_url

    def submit_and_wait(self, request_data: dict, timeout: int = 300) -> dict:
        # Submit crawl job
        response = requests.post(f"{self.base_url}/crawl", json=request_data)
        task_id = response.json()["task_id"]
        print(f"Task ID: {task_id}")

        # Poll for result
        start_time = time.time()
        while True:
            if time.time() - start_time > timeout:
                raise TimeoutError(f"Task {task_id} timeout")

            result = requests.get(f"{self.base_url}/task/{task_id}")
            status = result.json()

            if status["status"] == "completed":
                return status

            time.sleep(2)

def test_deployment():
    tester = Crawl4AiTester()

    # Test basic crawl
    request = {
        "urls": "https://www.nbcnews.com/business",
        "priority": 10
    }

    result = tester.submit_and_wait(request)
    print("Basic crawl successful!")
    print(f"Content length: {len(result['result']['markdown'])}")

if __name__ == "__main__":
    test_deployment()

Advanced Configuration βš™οΈ

Crawler Parameters

The crawler_params field allows you to configure the browser instance and crawling behavior. Here are key parameters you can use:

request = {
    "urls": "https://example.com",
    "crawler_params": {
        # Browser Configuration
        "headless": True,                    # Run in headless mode
        "browser_type": "chromium",          # chromium/firefox/webkit
        "user_agent": "custom-agent",        # Custom user agent
        "proxy": "http://proxy:8080",        # Proxy configuration

        # Performance & Behavior
        "page_timeout": 30000,               # Page load timeout (ms)
        "verbose": True,                     # Enable detailed logging
        "semaphore_count": 5,               # Concurrent request limit

        # Anti-Detection Features
        "simulate_user": True,               # Simulate human behavior
        "magic": True,                       # Advanced anti-detection
        "override_navigator": True,          # Override navigator properties

        # Session Management
        "user_data_dir": "./browser-data",   # Browser profile location
        "use_managed_browser": True,         # Use persistent browser
    }
}

Extra Parameters

The extra field allows passing additional parameters directly to the crawler's arun function:

request = {
    "urls": "https://example.com",
    "extra": {
        "word_count_threshold": 10,          # Min words per block
        "only_text": True,                   # Extract only text
        "bypass_cache": True,                # Force fresh crawl
        "process_iframes": True,             # Include iframe content
    }
}

Complete Examples

1.β€€Advanced News Crawling

request = {
    "urls": "https://www.nbcnews.com/business",
    "crawler_params": {
        "headless": True,
        "page_timeout": 30000,
        "remove_overlay_elements": True      # Remove popups
    },
    "extra": {
        "word_count_threshold": 50,          # Longer content blocks
        "bypass_cache": True                 # Fresh content
    },
    "css_selector": ".article-body"
}

2.β€€Anti-Detection Configuration

request = {
    "urls": "https://example.com",
    "crawler_params": {
        "simulate_user": True,
        "magic": True,
        "override_navigator": True,
        "user_agent": "Mozilla/5.0 ...",
        "headers": {
            "Accept-Language": "en-US,en;q=0.9"
        }
    }
}

3.β€€LLM Extraction with Custom Parameters

request = {
    "urls": "https://openai.com/pricing",
    "extraction_config": {
        "type": "llm",
        "params": {
            "provider": "openai/gpt-4",
            "schema": pricing_schema
        }
    },
    "crawler_params": {
        "verbose": True,
        "page_timeout": 60000
    },
    "extra": {
        "word_count_threshold": 1,
        "only_text": True
    }
}

4.β€€Session-Based Dynamic Content

request = {
    "urls": "https://example.com",
    "crawler_params": {
        "session_id": "dynamic_session",
        "headless": False,
        "page_timeout": 60000
    },
    "js_code": ["window.scrollTo(0, document.body.scrollHeight);"],
    "wait_for": "js:() => document.querySelectorAll('.item').length > 10",
    "extra": {
        "delay_before_return_html": 2.0
    }
}

5.β€€Screenshot with Custom Timing

request = {
    "urls": "https://example.com",
    "screenshot": True,
    "crawler_params": {
        "headless": True,
        "screenshot_wait_for": ".main-content"
    },
    "extra": {
        "delay_before_return_html": 3.0
    }
}

Parameter Reference Table

Category Parameter Type Description
Browser headless bool Run browser in headless mode
Browser browser_type str Browser engine selection
Browser user_agent str Custom user agent string
Network proxy str Proxy server URL
Network headers dict Custom HTTP headers
Timing page_timeout int Page load timeout (ms)
Timing delay_before_return_html float Wait before capture
Anti-Detection simulate_user bool Human behavior simulation
Anti-Detection magic bool Advanced protection
Session session_id str Browser session ID
Session user_data_dir str Profile directory
Content word_count_threshold int Minimum words per block
Content only_text bool Text-only extraction
Content process_iframes bool Include iframe content
Debug verbose bool Detailed logging
Debug log_console bool Browser console logs

Troubleshooting πŸ”

Common Issues

1.β€€Connection Refused

Error: Connection refused at localhost:11235
Solution: Ensure the container is running and ports are properly mapped.

2.β€€Resource Limits

Error: No available slots
Solution: Increase MAX_CONCURRENT_TASKS or container resources.

3.β€€GPU Access

Error: GPU not found
Solution: Ensure proper NVIDIA drivers and use --gpus all flag.

Debug Mode

Access container for debugging:

docker run -it --entrypoint /bin/bash unclecode/crawl4ai:all

View container logs:

docker logs [container_id]

Best Practices 🌟

1.β€€Resource Management - Set appropriate memory and CPU limits - Monitor resource usage via health endpoint - Use basic version for simple crawling tasks

2.β€€Scaling - Use multiple containers for high load - Implement proper load balancing - Monitor performance metrics

3.β€€Security - Use environment variables for sensitive data - Implement proper network isolation - Regular security updates

API Reference πŸ“š

Health Check

GET /health

Submit Crawl Task

POST /crawl
Content-Type: application/json

{
    "urls": "string or array",
    "extraction_config": {
        "type": "basic|llm|cosine|json_css",
        "params": {}
    },
    "priority": 1-10,
    "ttl": 3600
}

Get Task Status

GET /task/{task_id}

For more details, visit the official documentation.