Content Selection

Crawl4AI provides multiple ways to select, filter, and refine the content from your crawls. Whether you need to target a specific CSS region, exclude entire tags, filter out external links, or remove certain domains and images, CrawlerRunConfig offers a wide range of parameters.

Below, we show how to configure these parameters and combine them for precise control.


1. CSS-Based Selection

A straightforward way to limit your crawl results to a certain region of the page is css_selector in CrawlerRunConfig:

import asyncio
from crawl4ai import AsyncWebCrawler, CrawlerRunConfig

async def main():
    config = CrawlerRunConfig(
        # e.g., first 30 items from Hacker News
        css_selector=".athing:nth-child(-n+30)"  
    )
    async with AsyncWebCrawler() as crawler:
        result = await crawler.arun(
            url="https://news.ycombinator.com/newest", 
            config=config
        )
        print("Partial HTML length:", len(result.cleaned_html))

if __name__ == "__main__":
    asyncio.run(main())

Result: Only elements matching that selector remain in result.cleaned_html.


2. Content Filtering & Exclusions

2.1 Basic Overview

config = CrawlerRunConfig(
    # Content thresholds
    word_count_threshold=10,        # Minimum words per block

    # Tag exclusions
    excluded_tags=['form', 'header', 'footer', 'nav'],

    # Link filtering
    exclude_external_links=True,    
    exclude_social_media_links=True,
    # Block entire domains
    exclude_domains=["adtrackers.com", "spammynews.org"],    
    exclude_social_media_domains=["facebook.com", "twitter.com"],

    # Media filtering
    exclude_external_images=True
)

Explanation:

  • word_count_threshold: Ignores text blocks under X words. Helps skip trivial blocks like short nav or disclaimers.
  • excluded_tags: Removes entire tags (<form>, <header>, <footer>, etc.).
  • Link Filtering:
  • exclude_external_links: Strips out external links and may remove them from result.links.
  • exclude_social_media_links: Removes links pointing to known social media domains.
  • exclude_domains: A custom list of domains to block if discovered in links.
  • exclude_social_media_domains: A curated list (override or add to it) for social media sites.
  • Media Filtering:
  • exclude_external_images: Discards images not hosted on the same domain as the main page (or its subdomains).

By default in case you set exclude_social_media_links=True, the following social media domains are excluded:

[
    'facebook.com',
    'twitter.com',
    'x.com',
    'linkedin.com',
    'instagram.com',
    'pinterest.com',
    'tiktok.com',
    'snapchat.com',
    'reddit.com',
]

2.2 Example Usage

import asyncio
from crawl4ai import AsyncWebCrawler, CrawlerRunConfig, CacheMode

async def main():
    config = CrawlerRunConfig(
        css_selector="main.content", 
        word_count_threshold=10,
        excluded_tags=["nav", "footer"],
        exclude_external_links=True,
        exclude_social_media_links=True,
        exclude_domains=["ads.com", "spammytrackers.net"],
        exclude_external_images=True,
        cache_mode=CacheMode.BYPASS
    )

    async with AsyncWebCrawler() as crawler:
        result = await crawler.arun(url="https://news.ycombinator.com", config=config)
        print("Cleaned HTML length:", len(result.cleaned_html))

if __name__ == "__main__":
    asyncio.run(main())

Note: If these parameters remove too much, reduce or disable them accordingly.


3. Handling Iframes

Some sites embed content in <iframe> tags. If you want that inline:

config = CrawlerRunConfig(
    # Merge iframe content into the final output
    process_iframes=True,    
    remove_overlay_elements=True
)

Usage:

import asyncio
from crawl4ai import AsyncWebCrawler, CrawlerRunConfig

async def main():
    config = CrawlerRunConfig(
        process_iframes=True,
        remove_overlay_elements=True
    )
    async with AsyncWebCrawler() as crawler:
        result = await crawler.arun(
            url="https://example.org/iframe-demo", 
            config=config
        )
        print("Iframe-merged length:", len(result.cleaned_html))

if __name__ == "__main__":
    asyncio.run(main())


4. Structured Extraction Examples

You can combine content selection with a more advanced extraction strategy. For instance, a CSS-based or LLM-based extraction strategy can run on the filtered HTML.

4.1 Pattern-Based with JsonCssExtractionStrategy

import asyncio
import json
from crawl4ai import AsyncWebCrawler, CrawlerRunConfig, CacheMode
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy

async def main():
    # Minimal schema for repeated items
    schema = {
        "name": "News Items",
        "baseSelector": "tr.athing",
        "fields": [
            {"name": "title", "selector": "a.storylink", "type": "text"},
            {
                "name": "link", 
                "selector": "a.storylink", 
                "type": "attribute", 
                "attribute": "href"
            }
        ]
    }

    config = CrawlerRunConfig(
        # Content filtering
        excluded_tags=["form", "header"],
        exclude_domains=["adsite.com"],

        # CSS selection or entire page
        css_selector="table.itemlist",

        # No caching for demonstration
        cache_mode=CacheMode.BYPASS,

        # Extraction strategy
        extraction_strategy=JsonCssExtractionStrategy(schema)
    )

    async with AsyncWebCrawler() as crawler:
        result = await crawler.arun(
            url="https://news.ycombinator.com/newest", 
            config=config
        )
        data = json.loads(result.extracted_content)
        print("Sample extracted item:", data[:1])  # Show first item

if __name__ == "__main__":
    asyncio.run(main())

4.2 LLM-Based Extraction

import asyncio
import json
from pydantic import BaseModel, Field
from crawl4ai import AsyncWebCrawler, CrawlerRunConfig
from crawl4ai.extraction_strategy import LLMExtractionStrategy

class ArticleData(BaseModel):
    headline: str
    summary: str

async def main():
    llm_strategy = LLMExtractionStrategy(
        provider="openai/gpt-4",
        api_token="sk-YOUR_API_KEY",
        schema=ArticleData.schema(),
        extraction_type="schema",
        instruction="Extract 'headline' and a short 'summary' from the content."
    )

    config = CrawlerRunConfig(
        exclude_external_links=True,
        word_count_threshold=20,
        extraction_strategy=llm_strategy
    )

    async with AsyncWebCrawler() as crawler:
        result = await crawler.arun(url="https://news.ycombinator.com", config=config)
        article = json.loads(result.extracted_content)
        print(article)

if __name__ == "__main__":
    asyncio.run(main())

Here, the crawler:

  • Filters out external links (exclude_external_links=True).
  • Ignores very short text blocks (word_count_threshold=20).
  • Passes the final HTML to your LLM strategy for an AI-driven parse.

5. Comprehensive Example

Below is a short function that unifies CSS selection, exclusion logic, and a pattern-based extraction, demonstrating how you can fine-tune your final data:

import asyncio
import json
from crawl4ai import AsyncWebCrawler, CrawlerRunConfig, CacheMode
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy

async def extract_main_articles(url: str):
    schema = {
        "name": "ArticleBlock",
        "baseSelector": "div.article-block",
        "fields": [
            {"name": "headline", "selector": "h2", "type": "text"},
            {"name": "summary", "selector": ".summary", "type": "text"},
            {
                "name": "metadata",
                "type": "nested",
                "fields": [
                    {"name": "author", "selector": ".author", "type": "text"},
                    {"name": "date", "selector": ".date", "type": "text"}
                ]
            }
        ]
    }

    config = CrawlerRunConfig(
        # Keep only #main-content
        css_selector="#main-content",

        # Filtering
        word_count_threshold=10,
        excluded_tags=["nav", "footer"],  
        exclude_external_links=True,
        exclude_domains=["somebadsite.com"],
        exclude_external_images=True,

        # Extraction
        extraction_strategy=JsonCssExtractionStrategy(schema),

        cache_mode=CacheMode.BYPASS
    )

    async with AsyncWebCrawler() as crawler:
        result = await crawler.arun(url=url, config=config)
        if not result.success:
            print(f"Error: {result.error_message}")
            return None
        return json.loads(result.extracted_content)

async def main():
    articles = await extract_main_articles("https://news.ycombinator.com/newest")
    if articles:
        print("Extracted Articles:", articles[:2])  # Show first 2

if __name__ == "__main__":
    asyncio.run(main())

Why This Works: - CSS scoping with #main-content.
- Multiple exclude_ parameters to remove domains, external images, etc.
- A JsonCssExtractionStrategy to parse repeated article blocks.


6. Scraping Modes

Crawl4AI provides two different scraping strategies for HTML content processing: WebScrapingStrategy (BeautifulSoup-based, default) and LXMLWebScrapingStrategy (LXML-based). The LXML strategy offers significantly better performance, especially for large HTML documents.

from crawl4ai import AsyncWebCrawler, CrawlerRunConfig, LXMLWebScrapingStrategy

async def main():
    config = CrawlerRunConfig(
        scraping_strategy=LXMLWebScrapingStrategy()  # Faster alternative to default BeautifulSoup
    )
    async with AsyncWebCrawler() as crawler:
        result = await crawler.arun(
            url="https://example.com", 
            config=config
        )

You can also create your own custom scraping strategy by inheriting from ContentScrapingStrategy. The strategy must return a ScrapingResult object with the following structure:

from crawl4ai import ContentScrapingStrategy, ScrapingResult, MediaItem, Media, Link, Links

class CustomScrapingStrategy(ContentScrapingStrategy):
    def scrap(self, url: str, html: str, **kwargs) -> ScrapingResult:
        # Implement your custom scraping logic here
        return ScrapingResult(
            cleaned_html="<html>...</html>",  # Cleaned HTML content
            success=True,                     # Whether scraping was successful
            media=Media(
                images=[                      # List of images found
                    MediaItem(
                        src="https://example.com/image.jpg",
                        alt="Image description",
                        desc="Surrounding text",
                        score=1,
                        type="image",
                        group_id=1,
                        format="jpg",
                        width=800
                    )
                ],
                videos=[],                    # List of videos (same structure as images)
                audios=[]                     # List of audio files (same structure as images)
            ),
            links=Links(
                internal=[                    # List of internal links
                    Link(
                        href="https://example.com/page",
                        text="Link text",
                        title="Link title",
                        base_domain="example.com"
                    )
                ],
                external=[]                   # List of external links (same structure)
            ),
            metadata={                        # Additional metadata
                "title": "Page Title",
                "description": "Page description"
            }
        )

    async def ascrap(self, url: str, html: str, **kwargs) -> ScrapingResult:
        # For simple cases, you can use the sync version
        return await asyncio.to_thread(self.scrap, url, html, **kwargs)

Performance Considerations

The LXML strategy can be up to 10-20x faster than BeautifulSoup strategy, particularly when processing large HTML documents. However, please note:

  1. LXML strategy is currently experimental
  2. In some edge cases, the parsing results might differ slightly from BeautifulSoup
  3. If you encounter any inconsistencies between LXML and BeautifulSoup results, please raise an issue with a reproducible example

Choose LXML strategy when: - Processing large HTML documents (recommended for >100KB) - Performance is critical - Working with well-formed HTML

Stick to BeautifulSoup strategy (default) when: - Maximum compatibility is needed - Working with malformed HTML - Exact parsing behavior is critical


7. Conclusion

By mixing css_selector scoping, content filtering parameters, and advanced extraction strategies, you can precisely choose which data to keep. Key parameters in CrawlerRunConfig for content selection include:

1. css_selector – Basic scoping to an element or region.
2. word_count_threshold – Skip short blocks.
3. excluded_tags – Remove entire HTML tags.
4. exclude_external_links, exclude_social_media_links, exclude_domains – Filter out unwanted links or domains.
5. exclude_external_images – Remove images from external sources.
6. process_iframes – Merge iframe content if needed.

Combine these with structured extraction (CSS, LLM-based, or others) to build powerful crawls that yield exactly the content you want, from raw or cleaned HTML up to sophisticated JSON structures. For more detail, see Configuration Reference. Enjoy curating your data to the max!