Browser, Crawler & LLM Configuration (Quick Overview)

Crawl4AI’s flexibility stems from two key classes:

1. BrowserConfig – Dictates how the browser is launched and behaves (e.g., headless or visible, proxy, user agent).
2. CrawlerRunConfig – Dictates how each crawl operates (e.g., caching, extraction, timeouts, JavaScript code to run, etc.).
3. LlmConfig - Dictates how LLM providers are configured. (model, api token, base url, temperature etc.)

In most examples, you create one BrowserConfig for the entire crawler session, then pass a fresh or re-used CrawlerRunConfig whenever you call arun(). This tutorial shows the most commonly used parameters. If you need advanced or rarely used fields, see the Configuration Parameters.


1. BrowserConfig Essentials

class BrowserConfig:
    def __init__(
        browser_type="chromium",
        headless=True,
        proxy_config=None,
        viewport_width=1080,
        viewport_height=600,
        verbose=True,
        use_persistent_context=False,
        user_data_dir=None,
        cookies=None,
        headers=None,
        user_agent=None,
        text_mode=False,
        light_mode=False,
        extra_args=None,
        # ... other advanced parameters omitted here
    ):
        ...

Key Fields to Note

1. browser_type
- Options: "chromium", "firefox", or "webkit".
- Defaults to "chromium".
- If you need a different engine, specify it here.

2. headless
- True: Runs the browser in headless mode (invisible browser).
- False: Runs the browser in visible mode, which helps with debugging.

3. proxy_config
- A dictionary with fields like:

{
    "server": "http://proxy.example.com:8080", 
    "username": "...", 
    "password": "..."
}
- Leave as None if a proxy is not required.

4. viewport_width & viewport_height:
- The initial window size.
- Some sites behave differently with smaller or bigger viewports.

5. verbose:
- If True, prints extra logs.
- Handy for debugging.

6. use_persistent_context:
- If True, uses a persistent browser profile, storing cookies/local storage across runs.
- Typically also set user_data_dir to point to a folder.

7. cookies & headers:
- If you want to start with specific cookies or add universal HTTP headers, set them here.
- E.g. cookies=[{"name": "session", "value": "abc123", "domain": "example.com"}].

8. user_agent:
- Custom User-Agent string. If None, a default is used.
- You can also set user_agent_mode="random" for randomization (if you want to fight bot detection).

9. text_mode & light_mode:
- text_mode=True disables images, possibly speeding up text-only crawls.
- light_mode=True turns off certain background features for performance.

10. extra_args:
- Additional flags for the underlying browser.
- E.g. ["--disable-extensions"].

Helper Methods

Both configuration classes provide a clone() method to create modified copies:

# Create a base browser config
base_browser = BrowserConfig(
    browser_type="chromium",
    headless=True,
    text_mode=True
)

# Create a visible browser config for debugging
debug_browser = base_browser.clone(
    headless=False,
    verbose=True
)

Minimal Example:

from crawl4ai import AsyncWebCrawler, BrowserConfig

browser_conf = BrowserConfig(
    browser_type="firefox",
    headless=False,
    text_mode=True
)

async with AsyncWebCrawler(config=browser_conf) as crawler:
    result = await crawler.arun("https://example.com")
    print(result.markdown[:300])

2. CrawlerRunConfig Essentials

class CrawlerRunConfig:
    def __init__(
        word_count_threshold=200,
        extraction_strategy=None,
        markdown_generator=None,
        cache_mode=None,
        js_code=None,
        wait_for=None,
        screenshot=False,
        pdf=False,
        enable_rate_limiting=False,
        rate_limit_config=None,
        memory_threshold_percent=70.0,
        check_interval=1.0,
        max_session_permit=20,
        display_mode=None,
        verbose=True,
        stream=False,  # Enable streaming for arun_many()
        # ... other advanced parameters omitted
    ):
        ...

Key Fields to Note

1. word_count_threshold:
- The minimum word count before a block is considered.
- If your site has lots of short paragraphs or items, you can lower it.

2. extraction_strategy:
- Where you plug in JSON-based extraction (CSS, LLM, etc.).
- If None, no structured extraction is done (only raw/cleaned HTML + markdown).

3. markdown_generator:
- E.g., DefaultMarkdownGenerator(...), controlling how HTML→Markdown conversion is done.
- If None, a default approach is used.

4. cache_mode:
- Controls caching behavior (ENABLED, BYPASS, DISABLED, etc.).
- If None, defaults to some level of caching or you can specify CacheMode.ENABLED.

5. js_code:
- A string or list of JS strings to execute.
- Great for “Load More” buttons or user interactions.

6. wait_for:
- A CSS or JS expression to wait for before extracting content.
- Common usage: wait_for="css:.main-loaded" or wait_for="js:() => window.loaded === true".

7. screenshot & pdf:
- If True, captures a screenshot or PDF after the page is fully loaded.
- The results go to result.screenshot (base64) or result.pdf (bytes).

8. verbose:
- Logs additional runtime details.
- Overlaps with the browser’s verbosity if also set to True in BrowserConfig.

9. enable_rate_limiting:
- If True, enables rate limiting for batch processing.
- Requires rate_limit_config to be set.

10. memory_threshold_percent:
- The memory threshold (as a percentage) to monitor.
- If exceeded, the crawler will pause or slow down.

11. check_interval:
- The interval (in seconds) to check system resources.
- Affects how often memory and CPU usage are monitored.

12. max_session_permit:
- The maximum number of concurrent crawl sessions.
- Helps prevent overwhelming the system.

13. display_mode:
- The display mode for progress information (DETAILED, BRIEF, etc.).
- Affects how much information is printed during the crawl.

Helper Methods

The clone() method is particularly useful for creating variations of your crawler configuration:

# Create a base configuration
base_config = CrawlerRunConfig(
    cache_mode=CacheMode.ENABLED,
    word_count_threshold=200,
    wait_until="networkidle"
)

# Create variations for different use cases
stream_config = base_config.clone(
    stream=True,  # Enable streaming mode
    cache_mode=CacheMode.BYPASS
)

debug_config = base_config.clone(
    page_timeout=120000,  # Longer timeout for debugging
    verbose=True
)

The clone() method: - Creates a new instance with all the same settings - Updates only the specified parameters - Leaves the original configuration unchanged - Perfect for creating variations without repeating all parameters


3. LlmConfig Essentials

Key fields to note

1. provider:
- Which LLM provoder to use. - Possible values are "ollama/llama3","groq/llama3-70b-8192","groq/llama3-8b-8192", "openai/gpt-4o-mini" ,"openai/gpt-4o","openai/o1-mini","openai/o1-preview","openai/o3-mini","openai/o3-mini-high","anthropic/claude-3-haiku-20240307","anthropic/claude-3-opus-20240229","anthropic/claude-3-sonnet-20240229","anthropic/claude-3-5-sonnet-20240620","gemini/gemini-pro","gemini/gemini-1.5-pro","gemini/gemini-2.0-flash","gemini/gemini-2.0-flash-exp","gemini/gemini-2.0-flash-lite-preview-02-05","deepseek/deepseek-chat"
(default: "openai/gpt-4o-mini")

2. api_token:
- Optional. When not provided explicitly, api_token will be read from environment variables based on provider. For example: If a gemini model is passed as provider then,"GEMINI_API_KEY" will be read from environment variables
- API token of LLM provider
eg: api_token = "gsk_1ClHGGJ7Lpn4WGybR7vNWGdyb3FY7zXEw3SCiy0BAVM9lL8CQv" - Environment variable - use with prefix "env:"
eg:api_token = "env: GROQ_API_KEY"

3. base_url:
- If your provider has a custom endpoint

llmConfig = LlmConfig(provider="openai/gpt-4o-mini", api_token=os.getenv("OPENAI_API_KEY"))

4. Putting It All Together

In a typical scenario, you define one BrowserConfig for your crawler session, then create one or more CrawlerRunConfig & LlmConfig depending on each call’s needs:

import asyncio
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode, LlmConfig
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy

async def main():
    # 1) Browser config: headless, bigger viewport, no proxy
    browser_conf = BrowserConfig(
        headless=True,
        viewport_width=1280,
        viewport_height=720
    )

    # 2) Example extraction strategy
    schema = {
        "name": "Articles",
        "baseSelector": "div.article",
        "fields": [
            {"name": "title", "selector": "h2", "type": "text"},
            {"name": "link", "selector": "a", "type": "attribute", "attribute": "href"}
        ]
    }
    extraction = JsonCssExtractionStrategy(schema)

    # 3) Example LLM content filtering

    gemini_config = LlmConfig(
        provider="gemini/gemini-1.5-pro" 
        api_token = "env:GEMINI_API_TOKEN"
    )

    # Initialize LLM filter with specific instruction
    filter = LLMContentFilter(
        llmConfig=gemini_config,  # or your preferred provider
        instruction="""
        Focus on extracting the core educational content.
        Include:
        - Key concepts and explanations
        - Important code examples
        - Essential technical details
        Exclude:
        - Navigation elements
        - Sidebars
        - Footer content
        Format the output as clean markdown with proper code blocks and headers.
        """,
        chunk_token_threshold=500,  # Adjust based on your needs
        verbose=True
    )

    md_generator = DefaultMarkdownGenerator(
    content_filter=filter,
    options={"ignore_links": True}

    # 4) Crawler run config: skip cache, use extraction
    run_conf = CrawlerRunConfig(
        markdown_generator=md_generator,
        extraction_strategy=extraction,
        cache_mode=CacheMode.BYPASS,
    )

    async with AsyncWebCrawler(config=browser_conf) as crawler:
        # 4) Execute the crawl
        result = await crawler.arun(url="https://example.com/news", config=run_conf)

        if result.success:
            print("Extracted content:", result.extracted_content)
        else:
            print("Error:", result.error_message)

if __name__ == "__main__":
    asyncio.run(main())

5. Next Steps

For a detailed list of available parameters (including advanced ones), see:

You can explore topics like:

  • Custom Hooks & Auth (Inject JavaScript or handle login forms).
  • Session Management (Re-use pages, preserve state across multiple calls).
  • Magic Mode or Identity-based Crawling (Fight bot detection by simulating user behavior).
  • Advanced Caching (Fine-tune read/write cache modes).

6. Conclusion

BrowserConfig, CrawlerRunConfig and LlmConfig give you straightforward ways to define:

  • Which browser to launch, how it should run, and any proxy or user agent needs.
  • How each crawl should behave—caching, timeouts, JavaScript code, extraction strategies, etc.
  • Which LLM provider to use, api token, temperature and base url for custom endpoints

Use them together for clear, maintainable code, and when you need more specialized behavior, check out the advanced parameters in the reference docs. Happy crawling!