Network Requests & Console Message Capturing

Crawl4AI can capture all network requests and browser console messages during a crawl, which is invaluable for debugging, security analysis, or understanding page behavior.

Configuration

To enable network and console capturing, use these configuration options:

from crawl4ai import AsyncWebCrawler, CrawlerRunConfig

# Enable both network request capture and console message capture
config = CrawlerRunConfig(
    capture_network_requests=True,  # Capture all network requests and responses
    capture_console_messages=True   # Capture all browser console output
)

Example Usage

import asyncio
import json
from crawl4ai import AsyncWebCrawler, CrawlerRunConfig

async def main():
    # Enable both network request capture and console message capture
    config = CrawlerRunConfig(
        capture_network_requests=True,
        capture_console_messages=True
    )

    async with AsyncWebCrawler() as crawler:
        result = await crawler.arun(
            url="https://example.com",
            config=config
        )

        if result.success:
            # Analyze network requests
            if result.network_requests:
                print(f"Captured {len(result.network_requests)} network events")

                # Count request types
                request_count = len([r for r in result.network_requests if r.get("event_type") == "request"])
                response_count = len([r for r in result.network_requests if r.get("event_type") == "response"])
                failed_count = len([r for r in result.network_requests if r.get("event_type") == "request_failed"])

                print(f"Requests: {request_count}, Responses: {response_count}, Failed: {failed_count}")

                # Find API calls
                api_calls = [r for r in result.network_requests 
                            if r.get("event_type") == "request" and "api" in r.get("url", "")]
                if api_calls:
                    print(f"Detected {len(api_calls)} API calls:")
                    for call in api_calls[:3]:  # Show first 3
                        print(f"  - {call.get('method')} {call.get('url')}")

            # Analyze console messages
            if result.console_messages:
                print(f"Captured {len(result.console_messages)} console messages")

                # Group by type
                message_types = {}
                for msg in result.console_messages:
                    msg_type = msg.get("type", "unknown")
                    message_types[msg_type] = message_types.get(msg_type, 0) + 1

                print("Message types:", message_types)

                # Show errors (often the most important)
                errors = [msg for msg in result.console_messages if msg.get("type") == "error"]
                if errors:
                    print(f"Found {len(errors)} console errors:")
                    for err in errors[:2]:  # Show first 2
                        print(f"  - {err.get('text', '')[:100]}")

            # Export all captured data to a file for detailed analysis
            with open("network_capture.json", "w") as f:
                json.dump({
                    "url": result.url,
                    "network_requests": result.network_requests or [],
                    "console_messages": result.console_messages or []
                }, f, indent=2)

            print("Exported detailed capture data to network_capture.json")

if __name__ == "__main__":
    asyncio.run(main())

Captured Data Structure

Network Requests

The result.network_requests contains a list of dictionaries, each representing a network event with these common fields:

Field Description
event_type Type of event: "request", "response", or "request_failed"
url The URL of the request
timestamp Unix timestamp when the event was captured

Request Event Fields

{
  "event_type": "request",
  "url": "https://example.com/api/data.json",
  "method": "GET",
  "headers": {"User-Agent": "...", "Accept": "..."},
  "post_data": "key=value&otherkey=value",
  "resource_type": "fetch",
  "is_navigation_request": false,
  "timestamp": 1633456789.123
}

Response Event Fields

{
  "event_type": "response",
  "url": "https://example.com/api/data.json",
  "status": 200,
  "status_text": "OK",
  "headers": {"Content-Type": "application/json", "Cache-Control": "..."},
  "from_service_worker": false,
  "request_timing": {"requestTime": 1234.56, "receiveHeadersEnd": 1234.78},
  "timestamp": 1633456789.456
}

Failed Request Event Fields

{
  "event_type": "request_failed",
  "url": "https://example.com/missing.png",
  "method": "GET",
  "resource_type": "image",
  "failure_text": "net::ERR_ABORTED 404",
  "timestamp": 1633456789.789
}

Console Messages

The result.console_messages contains a list of dictionaries, each representing a console message with these common fields:

Field Description
type Message type: "log", "error", "warning", "info", etc.
text The message text
timestamp Unix timestamp when the message was captured

Console Message Example

{
  "type": "error",
  "text": "Uncaught TypeError: Cannot read property 'length' of undefined",
  "location": "https://example.com/script.js:123:45",
  "timestamp": 1633456790.123
}

Key Benefits

  • Full Request Visibility: Capture all network activity including:
  • Requests (URLs, methods, headers, post data)
  • Responses (status codes, headers, timing)
  • Failed requests (with error messages)

  • Console Message Access: View all JavaScript console output:

  • Log messages
  • Warnings
  • Errors with stack traces
  • Developer debugging information

  • Debugging Power: Identify issues such as:

  • Failed API calls or resource loading
  • JavaScript errors affecting page functionality
  • CORS or other security issues
  • Hidden API endpoints and data flows

  • Security Analysis: Detect:

  • Unexpected third-party requests
  • Data leakage in request payloads
  • Suspicious script behavior

  • Performance Insights: Analyze:

  • Request timing data
  • Resource loading patterns
  • Potential bottlenecks

Use Cases

  1. API Discovery: Identify hidden endpoints and data flows in single-page applications
  2. Debugging: Track down JavaScript errors affecting page functionality
  3. Security Auditing: Detect unwanted third-party requests or data leakage
  4. Performance Analysis: Identify slow-loading resources
  5. Ad/Tracker Analysis: Detect and catalog advertising or tracking calls

This capability is especially valuable for complex sites with heavy JavaScript, single-page applications, or when you need to understand the exact communication happening between a browser and servers.